Presynaptic versus postsynaptic localization of mu and delta opioid receptors in dorsal and ventral striatopallidal pathways.
نویسندگان
چکیده
Parallel studies have demonstrated that enkephalin release from nerve terminals in the pallidum (globus pallidus and ventral pallidum) can be modulated by locally applied opioid drugs. To investigate further the mechanisms underlying these opioid effects, the present study examined the presynaptic and postsynaptic localization of delta (DOR1) and mu (MOR1) opioid receptors in the dorsal and ventral striatopallidal enkephalinergic system using fluorescence immunohistochemistry combined with anterograde and retrograde neuronal tracing techniques. DOR1 immunostaining patterns revealed primarily a postsynaptic localization of the receptor in pallidal cell bodies adjacent to enkephalin- or synaptophysin-positive fiber terminals. MOR1 immunostaining in the pallidum revealed both a presynaptic localization, as evidenced by punctate staining that co-localized with enkephalin and synaptophysin, and a postsynaptic localization, as evidenced by cytoplasmic staining of cells that were adjacent to enkephalin and synaptophysin immunoreactivities. Injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) or the retrograde tracer Texas Red-conjugated dextran amine (TRD) into the dorsal and ventral striatum resulted in labeling of striatopallidal fibers and pallidostriatal cell bodies, respectively. DOR1 immunostaining in the pallidum co-localized only with TRD and not PHA-L, whereas pallidal MOR1 immunostaining co-localized with PHA-L and not TRD. These results suggest that pallidal enkephalin release may be modulated by mu opioid receptors located presynaptically on striatopallidal enkephalinergic neurons and by delta opioid receptors located postsynaptically on pallidostriatal feedback neurons.
منابع مشابه
Presynaptic Versus Postsynaptic Localization of m and d Opioid Receptors in Dorsal and Ventral Striatopallidal Pathways
Parallel studies have demonstrated that enkephalin release from nerve terminals in the pallidum (globus pallidus and ventral pallidum) can be modulated by locally applied opioid drugs. To investigate further the mechanisms underlying these opioid effects, the present study examined the presynaptic and postsynaptic localization of d (DOR1) and m (MOR1) opioid receptors in the dorsal and ventral ...
متن کاملPresynaptic mu and delta opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro.
The role of enkephalin and the opioid receptors in modulating GABA release within the rat globus pallidus (GP) was investigated using whole-cell patch recordings made from visually identified neurons. Two major GP neuronal subtypes were classified on the basis of intrinsic membrane properties, action potential characteristics, the presence of the anomalous inward rectifier (Ih), and anode break...
متن کاملPresynaptic suppression of dorsal horn inhibitory transmission by mu-opioid receptors.
Opioids modify sensory experience at many levels in the CNS. The mechanisms of this action, including the ways opioid receptors affect synaptic transmission, are not yet fully understood. Here we show that the selective activation of mu-opioid receptors suppressed inhibitory transmission between spinal cord dorsal horn neurons in vitro. mu-Opioid receptor activation reduced evoked inhibitory po...
متن کاملEnkephalin Disinhibits Mu Opioid Receptor-Rich Striatal Patches via Delta Opioid Receptors
Opioid neuropeptides and their receptors are evolutionarily conserved neuromodulatory systems that profoundly influence behavior. In dorsal striatum, which expresses the endogenous opioid enkephalin, patches (or striosomes) are limbic-associated subcompartments enriched in mu opioid receptors. The functional implications of opioid signaling in dorsal striatum and the circuit elements in patches...
متن کاملDifferential expression and sensitivity of presynaptic and postsynaptic opioid receptors regulating hypothalamic proopiomelanocortin neurons.
Hypothalamic proopiomelanocortin (POMC) neurons release the endogenous opioid beta-endorphin and POMC neuron activity is inhibited by opioids, leading to the proposal that beta-endorphin acts to provide feedback inhibition. However, both intrinsic properties and synaptic inputs contribute to the regulation of POMC neurons such that attributing an autoregulatory role to opioids must include cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 19 شماره
صفحات -
تاریخ انتشار 1997